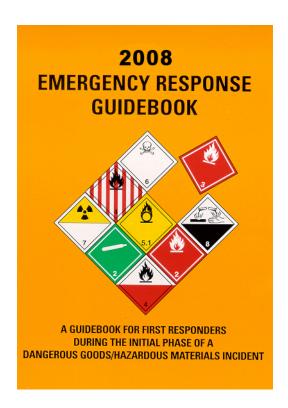

WESTBURY FIRE DEPARTMENT

HAZ-MAT AWARENESS REVIEW



BASIC
HAZAROUS MATERIAL
AWARENESS REVIEW

USE OF THE
EMERGENCY RESPONSE
GUIDE-2008

COURSE OBJECTIVES:

- 1. Review what a hazardous Material is and this Dept role at a scene
- 2. Review what an Emergency Response Guidebook (ERG) is,
- 3. Identify/Review where they can be found,
- 4. Identify/Review when & how they should be used to fulfill the departments objectives
- 5. Identify/Review the ERG's components,
- 6. Identify/Review the Classes of Hazardous Material,
- 7. Identify/Review Placards/Labels and the Hazard they display,
- 8. Identify/Review Container Recognition,
- 9. Identify how to gain further Assistance & Information, if the ERG doesn't give you enough information.

We have all seen an ERG,

Who here knows what it's used for ?

Who here knows where to find one?

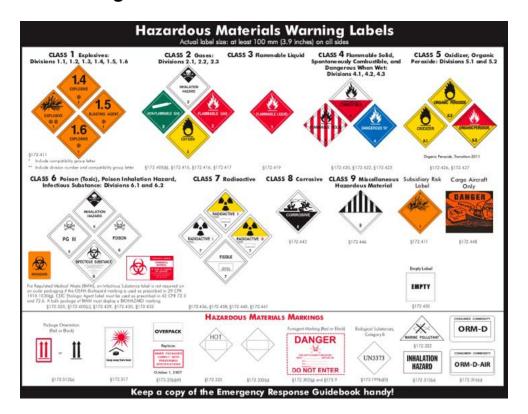
Who here knows how to properly use one?

This class will explain just that

Why do you need to know this?

The US Dept. of Labor Occupational Safety And Health Administration (aka: OSHA)

OSHA 29 CFR 1910.120 - requires :


ALL <u>First Responders</u> be trained in the use of this Emergency Response Guidebook.

OSHA also requires <u>Annual Refresher Training</u> to the level of operation.

Why do you need to know this?

Definition Hazardous Materials:

A hazardous material is any item or agent (biological, chemical, physical) which has the potential to cause harm to humans, animals, or the environment, either by itself or through interaction with other factors.

Why do you need to know this?

Public Safety "Duty to Act"

All Public Safety responders have a "Duty to Act" under the law.

Level of involvement, is defined by the agencies Emergency Response Plan (ERP).

Westbury FD – as with most Fire Dept. operates to the "**Operations Level**" at a Haz-Mat Incident.

What does that mean?

Why do you need to know this?

Five Levels of Training:

- First Responder Awareness Level
- First Responder Operational Level
 - Hazardous Materials Technician
- Hazardous Materials Specialist broken down into specific items: Transportation, Storage, use...
 - Hazardous Materials Incident Commander

Awareness & Operations – Defense Technicians & Specialists – Offense IC – Head Coach

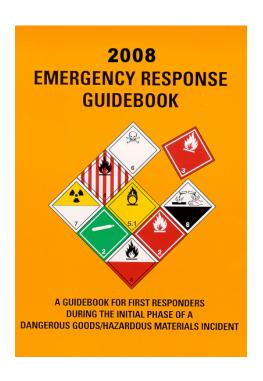
Why do you need to know this?

Our Primary Objectives at the *Operations Level* is to:

Recognition

Isolation

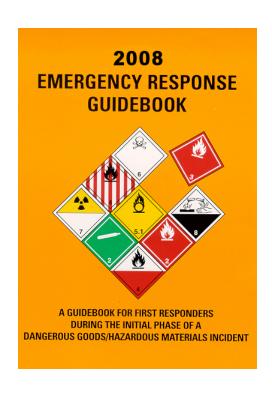
Protection


Notification

Then when needed,

Assist Tech/Specialist

Operations Level also play a vital role in the Decontamination Process under the guidance of the Tech / Specialist

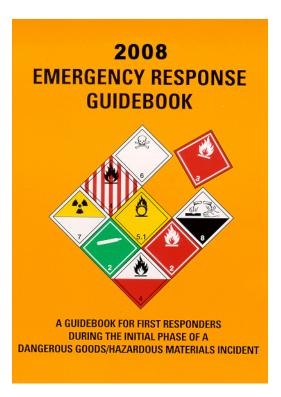

Why do you need to know this?

The Primary Tool we'll use to meet our objectives:

Emergency Response Guidebook

What is the ERG used for ?

An EGR is printed guide used in the "<u>initial response phase</u>" of an incident (the period following <u>arrival on scene</u>, and/or the <u>identification of dangerous substance</u> is confirmed) then

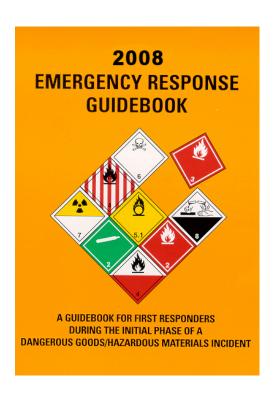

<u>Protective Actions</u> and area <u>Securement</u> <u>measures are initiated</u>,

assistance from qualified personnel is requested.

Remember our Objectives:

Recognition Isolation Protection Notification

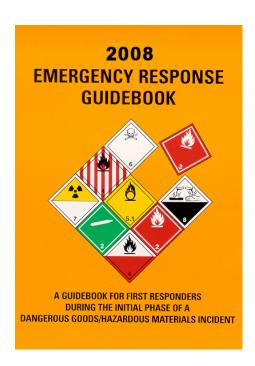
What is the ERG used for ?


The ERG is a <u>First Responder tool</u> and not something a Hazmat Technician will be using to deal with an incident later.

Although proper use of the ERG will make the Tech's job easier, if the initial action plan was implemented properly.

Especially with Proper Product Identification.

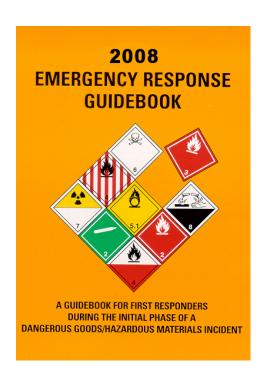
We don't want to set a plan for product "A" when we really have product "D".


Where do we find the ERG?

An ERG is located in the officers compartment of all of our <u>initial response</u> vehicles. – (by clipboards)

For the Chief's vehicles, it may be located in their back command area and on their laptops.

How do we use the ERG?



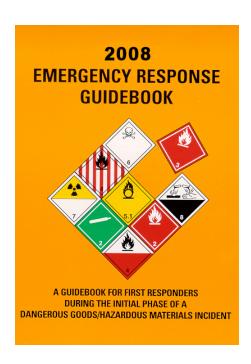
Use of an ERG begins at the calls inception.

If the dispatched information leads you to believe there may be a dangerous material involved, the ERG should be made easily accessible and ready for use.

These incidents should be approached using caution and preferably upwind (wind at you back), if at all possible.

How do we use the ERG?

With <u>Fixed Locations</u>, (that have known Haz-Mat,)


The ERG can be used by the Chiefs in Pre Planning, setting up a Pre Incident Action Plans for these locations.

Members could then have direction prior to ever leaving Headquarters, by the computer sheets.

Dispatchers can also give this additional data to rig as the unit goes 21 and while in route.

This is why it's important to note items we see at everyday calls, that may impose a Hazard to us later, and get that info back to the dispatchers, so it gets into our system.

How do we use the ERG?

Proper use of the ERG begins with

Identification:

We need to know 1 or more of the following:

- 1. Product Name
- 2. Products 4 digit ID Number
- 3. Type of container its being transported in.
- 4. Type of Placard or Label on the container

How do we find the **Product Name**?

In most cases the name of the product can be found by locating the <u>person who made</u> the <u>call</u> for help.

You are most likely being called to the premise because they spilled the product and they know what it is?

All Locations that have a hazardous material on premise will have Material Safety Data Sheets (aka: **MSDS**) for <u>each</u> product.

The MSDS will explain **everything** about the product: Name, contact info for its maker, physical and chemical characteristics, hazards, exposures, first aid procedures....

MATERIAL SAFETY DATA SHEET -

MATERIAL SAFETY DATA SHEET

Issued: August 6, 1992 **REVISED:** February 2, 2010

SECTION 1: PRODUCT INFORMATION

Product Name: RAIN - SHIELD CLEAR MB

Manufacturer: GEMITE PRODUCTS INC.

Address: 1787 Drew Road, Mississauga, ON L5S 1J5
Emergency Phone: Chemical Family: 48:888-443-6483 CANADA: 905-672-2020
Acrylic Emulsion Based Water Borne

T.D.G. Classification:

SECTION 2: HAZARDOUS INGREDIENTS

INGREDIENTS	%	TLV	CAS NO.
Ethylene Glycol	3.5		107 – 21 –5
Ester Alcohol	1.1		25265 – 77 –4

SECTION 3: PHYSICAL DATA

Physical State: Aqueous Paint

Odour & Appearance: Odourless, Water borne thin solution

Vapour Pressure: Unknown

Vapour Density: Evaporation Rate:

Boiling Point: 100 ℃
Specific Gravity: 1.1
PH: 9 - 10

SECTION 4: FIRE & EXPLOSION DATA

Flammability: Nonflammable Extinguishing Media: N/A Special Procedures: N/A Flash Point: N/A

Flash Point: N/A
Auto Ignition Temp: N/A
Upper Flammability Limit: N/A
Lower Flammability Limit: N/A
Hazardous Combustion Products: N/A

Explosion Data: No fire or explosion hazards

SECTION 5: REACTIVITY DATA

Conditions Contributing to Instability: Stable Incompatibility: Very Compatible Will not occur

Reactivity Conditions: None

Hazardous Products of Decomposition: Decomposition products of acrylic polymers

SECTION 6: TOXICOLOGICAL PROPERTIES

Route of Entry: Eyes, Mouth, Skin

Skin Contact: Reddening of skin upon repeated or prolonged contact

Eye Contact: Slight irritation to eyes with direct contact

Inhalation: Over exposure from spray mist may irritate upper respiratory tract

Ingestion: N/A
Effects of Chronic Exposure: N/A
Effects of Acute Exposure: N/A
TLV: N/A

Rain - Shield MB Cont'd Page 2

SECTION 7: PREVENTATIVE MEASURES

Protective Equipment

- Gloves Type: Impervious gloves

- Respiratory Type: Respiratory protection is required when sanding or grinding the finished

product

Eye Type: Safety glasses when spraying

Footwear Type: N/A
 Clothing Type: N/A
 Engineering Controls: N/A

Leak/ Spill: Wash down with water Waste Disposal: Same as paint.

Handling Procedures

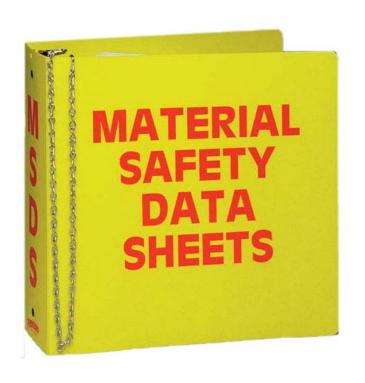
& Equipment: Avoid skin and eye contact.

Storage Needs: Keep container closed when not in use.

SECTION 8: FIRST AID MEASURES

Eye Contact: Irrigate with large amounts of water for at least 15 minutes. Seek medical

attention if irritation persists.


Skin Contact: Wash exposed areas with clean, fresh water and soap.

Inhalation: Move person to fresh air and seek medical attention.

Ingestion: Unless unconscious or convulsing, dilute material with water or milk. Do not

induce vomiting. Consult physician.

N/A: Not applicable

MSDS sheets can be found in common areas, such as break rooms, since all personnel inside that premise must have access to them.

The best way to immediately obtain the MSDS sheets at an incident is to have the person in charge of location have someone get them for you!

For Product being Transported – Non Fixed Locations

Roadway – within the Drivers Arms Length,

Bill of Lading (usually in the drivers door pocket)

Rail – on the conductor person,

Consist

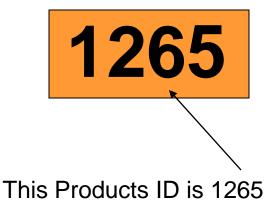
Waterway is the wheel began

Waterway – in the wheel house, Dangerous Cargo Manifest

Airplane – in the Cockpit, *Air Bill*

These all list the Cargo being Carried by the transportation vessel, they are similar to the MSDS sheets and will the have specific data on each of the products being carried.

How do we find the **Product's ID Number**?


Product ID number can be found **on** the "containers" - by a label or placard.

This Products ID is 1075

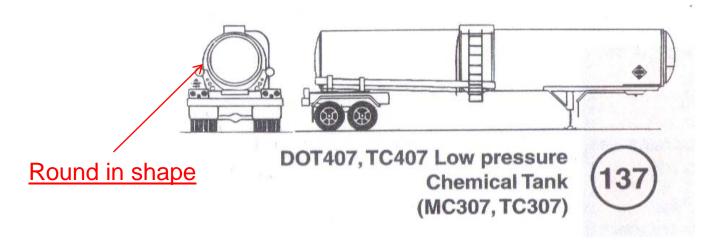
How do we find the **Product's ID Number**?

For Products that originated overseas, you may see a Orange rectangle with 4 black numbers

Identifying Product Containers

When we talk about identifying the product by it's containers, we are talking about, while it's being transported.

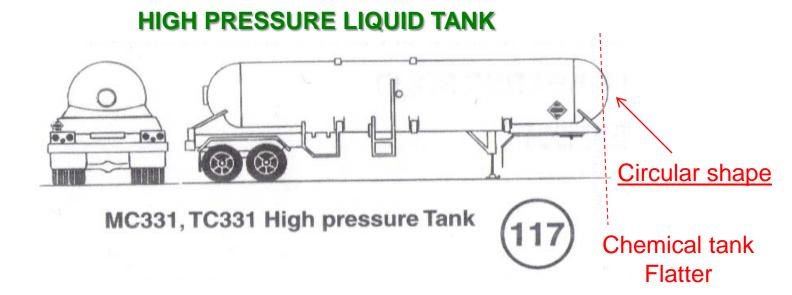
In almost all cases, we won't need to identify Product by its container in a facility, since we'll be able to get its MSDS.


For products being transported, it may be on fire and we'll be unable to get its Data Sheets, this is when Container ID becomes important.

NON- PRESSURE LIQUID TANK

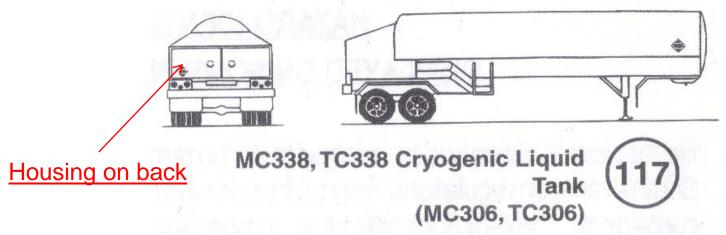
Can be seen daily delivering gasoline to the local stations

LOW PRESSURE LIQUID TANK


Note difference from Non Pressure – Round tank & Not Oval Shape

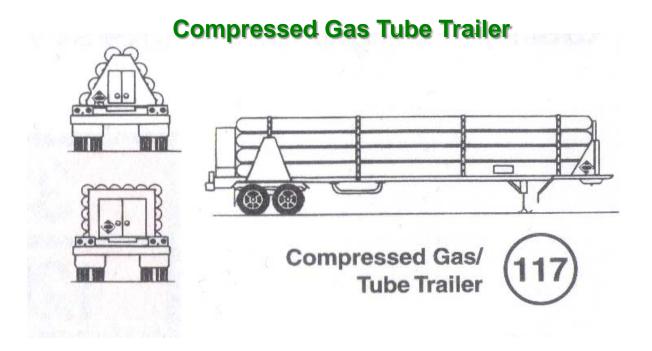
CORROSIVE LIQUID TANK

Difference from Low Pressure is has Multiple Support Bands in tank, due to weight of product

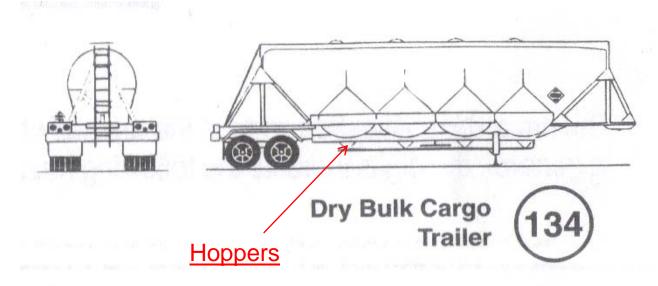

Can be seen regularly delivering Caustic Soda to the Water Districts Wells Stations

Can be seen regularly delivering propane

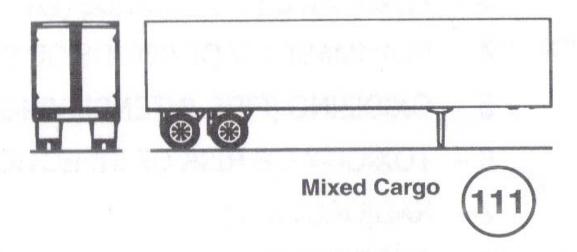
Note: roundness of tank front and back – not flat like low pressure


CRYOGENIC LIQUID TANK

Tank within a Tank – Outside tank is what keeps the inner Tank Cold


Besides the product hazard, the container is also a hazard, temperatures inside the outer tank could be 100's of degrees <u>below freezing</u>. If this tank is ruptured the product warms. What effect will it have on the product?

Most cases, the product is cooled to make it a liquid so more can be transported, as it is heated, it will convert back to a gas, and a lot of it.

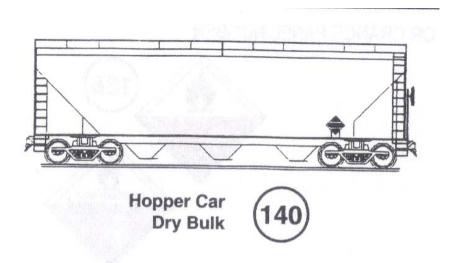

Besides used for Transportation, they stay parked on premises for long periods, as the product is being off loaded. Once they are empty the entire trailer is replaced.

DRY BULK CARGO TRAILER

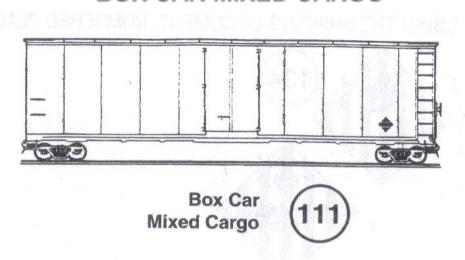
Can be seen regularly delivering Cement or Flour to bakeries

MIXED CARGO TRAILER

Can be seen regularly anytime, anywhere, delivering anything


Real danger is mixed product – you may a 2 safe products but when mixed together produce a dangerous one – (Clorox & Ammonia) Example – Grocery delivery truck

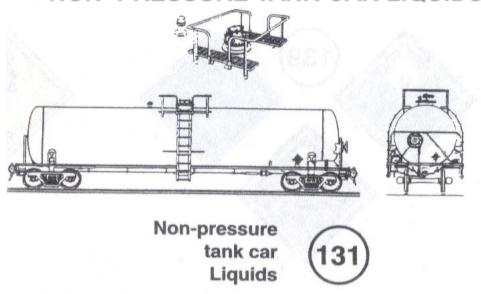
VACUUM LOADED TANK


Can be seen regularly on Voice Road in Carle Place – Citywide Sewer

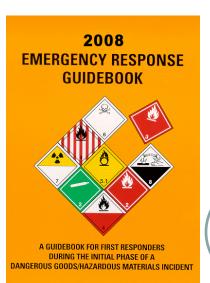
HOPPER CAR DRY BULK

Carries Dry Powder products, Cement Very Common on Rails

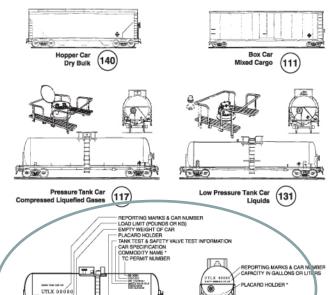
BOX CAR MIXED CARGO


Can be seen regularly anytime, anywhere, delivering anything

PRESSURE TANK CAR COMPRESSED LIQUIFIED GASES



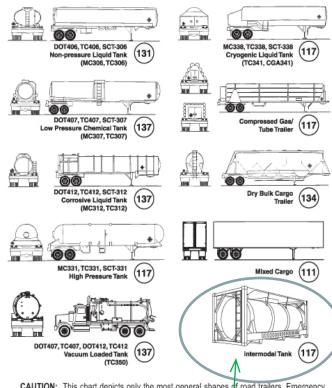
All valves on top housed within 1 single control center


NON- PRESSURE TANK CAR LIQUIDS

Looks similar to pressure tank car, but difference is it has <u>Multiple discharge Valves</u> on top

Help ID Train tank car Markings

RAIL CAR IDENTIFICATION CHART*


CAUTION: Emergency response personnel must be aware that rail tank cars vap widely inconstruction, fittings and purpose. Tank cars could transport products that may be solids, liquids or gases. The products may be under pressure. It is essential that products be identified by consultion shipping documents or train consist or contacting dispatch centers before emergency response is initiated.

The information stenciled on the sides or ends of tank cars, as illustrated above, may be used to identify the product utilizing:

- a. the commodity name shown; or
- the other information shown, especially reporting marks and car number which, when supplied to a dispatch center, will facilitate the identification of the product.
- * The recommended guides should be considered as last resort if the material cannot be identified by any other means.

Page 18

ROAD TRAILER IDENTIFICATION CHART*

CAUTION: This chart depicts only the most general shapes of road trailers. Emergency response personnel must be aware that there are many variations of road trailers, not illustrated above, that are used for shipping chemical products. The suggested guides are for the most hazardous products that may be transported in these trailer types.

 The recommended guides should be considered as last resort if the material cannot be identified by any other means.

Page 19

All can be found on page 18 & 19 of ERG

Shipping Cargo Tanks from a Ship to Back of Truck

Identifying Products Containers / Containers of Transportation

All these are common means of transporting a hazardous material from place to place.

Be aware most hazard occurs **not**while the product is being
transported, but when the product is
being **loaded & unloaded** from their
containers.

Identifying Placards By - Class of Hazardous Material

Class 1 - Explosives

Division 1.1 Explosives with a mass explosion hazard

Division 1.2 Explosives with a projection hazard

Division 1.3 Explosives with predominantly a fire hazard

Division 1.4 Explosives with no significant blast hazard

Division 1.5 Very insensitive explosives; blasting agents

Division 1.6 Extremely insensitive detonating articles

Class 2 - Gases

Division 2.1 Flammable gases

Division 2.2 Non-flammable, non-toxic* compressed gases

Division 2.3 Gases toxic* by inhalation

Division 2.4 Corrosive gases (Canada)

Class 3 - Flammable liquids/ combustible liquids

Class 4 - Flammable solids; Spontaneously combustible materials; and Dangerous when wet materials

Division 4.1 Flammable solids

Division 4.2 Spontaneously combustible materials

Division 4.3 Dangerous when wet materials

Class 5 - Oxidizers and Organic peroxides

Division 5.1 Oxidizers

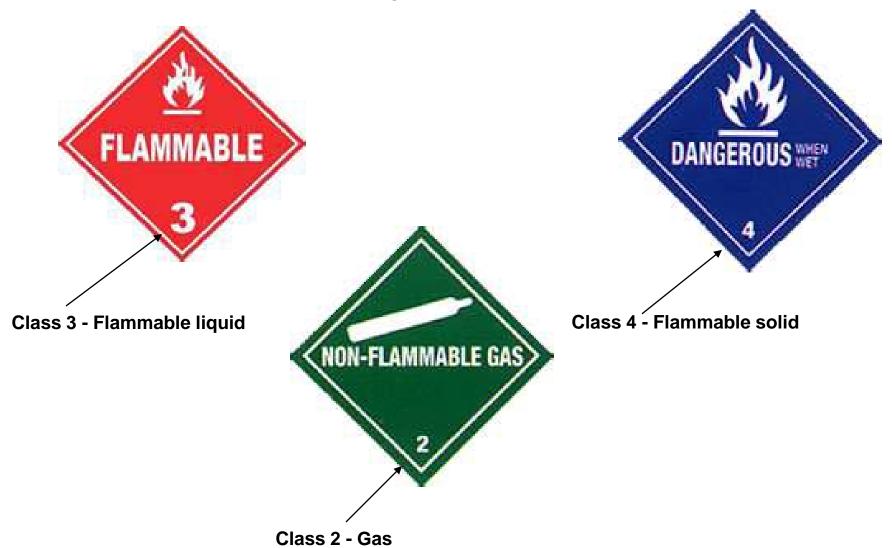
Division 5.2 Organic peroxides

Class 6 - Toxic* materials and Infectious substances

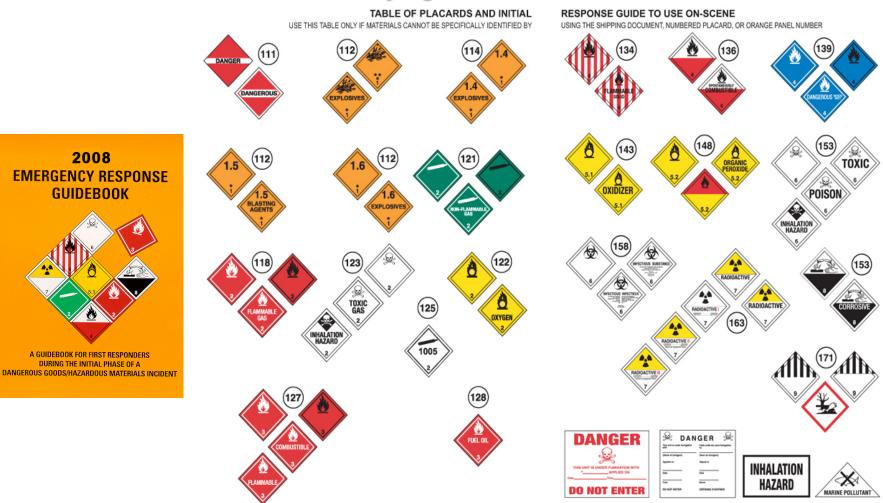
Division 6.1 Toxic* materials

Division 6.2 Infectious substances

Class 7 - Radioactive materials

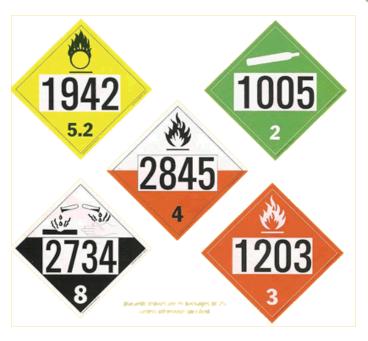

Class 8 - Corrosive materials

Class 9 - Miscellaneous dangerous goods



Identifying Placards/Labels

Placards/Labels are the warning label affixed to the products container.



Identifying Placards

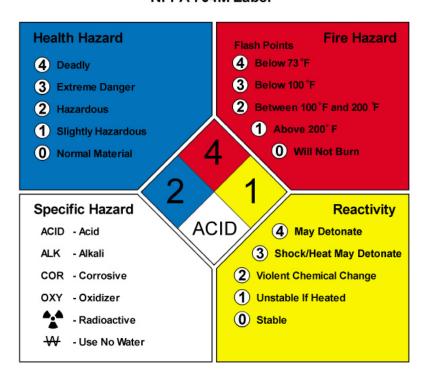
All can be found on page 16 & 17 of ERG

Identifying Placards/Labels

When you have a placard that displays an ID Number along with the Class, reference the ID in the guide, since it's more specific to the product and will give you the products actual name.

As you enter a structure you may see a NFPA 704 Placard:

RED – FLAMMABILITY


BLUE – HEALTH

YELLOW – REACTIVITY

WHITE - SPECIAL HAZARD

National Fire Protection Association NFPA 704M Label

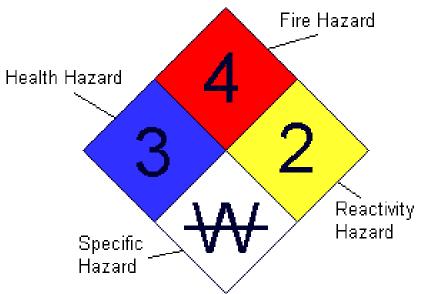
General Rating Summary

Health	Flammability	Reactivity			
4 May be fatal on short exposure. Specialized protective equipment is required	4 Flammable gas or extremely flammable liquid	4 Explosive material at room temperature			
3 Corrosive or toxic. Avoid skin contact or inhalation.	3 Flammable liquid flash point below 100 degrees F	3 May be explosive if shocked, heated under confinement or mixed with water			
2 May be harmful if inhaled or absorbed.	2 Combustible liquid flash point of 100 to 200 degrees F	2 Unstable or may react violently if mixed with water			
1 May be irritating.	1 Combustible if heated	May react if heated or mixed with water but not violently			
O No unusual hazard	O Not combustible	O Not reactive when mixed with water			

Rates on a scale of 0-4, 4 being most dangerous

RED - FLAMMABILITY - 4

(How Flammable it is) Flash < 73 degree F


BLUE - HEALTH - 3

(How it will effect your Health) Extreme danger

YELLOW – REACTIVITY – 2

(how well does it play) chemical change is violent

WHITE - SPECIAL HAZARD - W with line through it (reacts with water - do not use)

What does this mean?

RED – Flammability – 3
Flash below 100 degree F

BLUE – Health Hazard – 2 hazardous

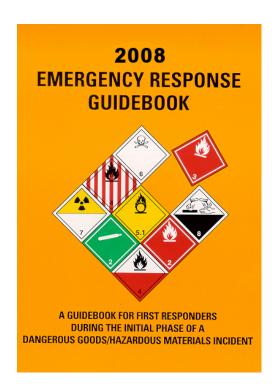
YELLOW – Reactivity – 1
Unstable if heated

The W with the line represent it reacts to water, so don't use water.

Our 1 danger will be the 3 – Fire below 100 degrees but do we use water to keep temp down? NO

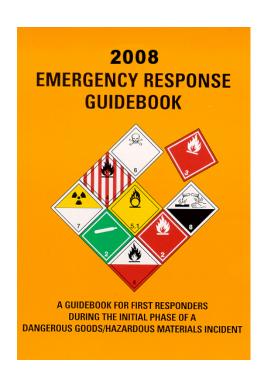
What about this placard, what is our hazard?

BLUE – HEALTH – 4 Deadly

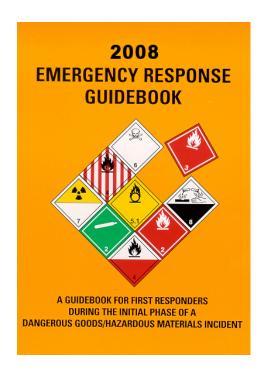

RED – FLAMMABILITY – 3 FP < 100

YELLOW – REACTIVITY – 2 Violent chemical change

WHITE - SPECIAL HAZARD - ACID



Our biggest hazard is to our health, although flammability is a close second.


How do we reference this to the ERG?

How do we reference this to the ERG?

We can't; because we still have not accomplished meeting 1 of our objectives: Name, Number, Item Placard listing the class of Hazardous Material or Container Identification.

How do we reference this to the ERG?

This may be all you find, If so, let this placard guide you to cautions, as you get the additional data.

Hint:

Health mean you may not want to get to close...

How do we reference this to the ERG?

These NFPA 704 placards are usually found on the gates entering a facility or on the building, visible as you enter.

This will take into consideration all hazardous material in the premise and is very Non-specific.

This is why more information is required and it is not addressed in the ERG.

Think of it as your warning label to what to come.

Putting what we now know to use, utilizing the ERG

Once we've learned:

- *1. The Products Name
- *2. The Products 4 digit ID #
- 3. The Type of Container it's being Transported in Or
- 4. The Placard that is on the products container

NOW WHAT DO WE DO?

* Our Main Objective to get either a Name or ID, since will give us a more precise action plan.

Putting what we now know to use, utilizing the ERG

When we looking at the ERG from the side we notice:

It is Divided into 4 Sections

Yellow Blue Orange Green

The White pages are instructional pages to the guides use.

Putting what we now know to use, utilizing the ERG

Yellow-bordered pages:

Index list of dangerous goods in numerical order by **ID number**.

This section of the guide will be consulted if you had the <u>Products ID Number</u> of the material involved.

This list displays the <u>4-digit ID number</u> of the material followed by its assigned emergency response guide and the full material name.

For example:

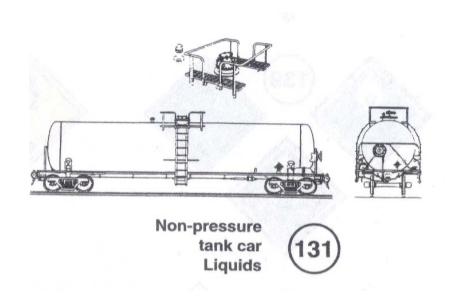
ID No. Guide No. Name of Material 1090 127 Acetone

ID Guide Name of Material No. No.	ID Guide Name of Material No. No.	ID Guide Name of Material No. No.	ID Guide Name of Material No. No.
1030 115 1,1-Difluoroethane	1046 121 Helium	1063 115 Refrigerant gas R-40	1077 115 Propylene
1030 115 Difluoroethane	1046 121 Helium, compressed	1064 117 Methyl mercaptan	1078 126 Dispersant gas, n.o.s.
1030 115 Refrigerant gas R-152a	1048 125 Hydrogen bromide, anhydrous	1065 121 Neon	1078 126 Refrigerant gas, n.o.s.
1032 118 Dimethylamine, anhydrous	1049 115 Hydrogen	1065 121 Neon, compressed	1079 125 Sulfur dioxide
1033 115 Dimethyl ether	1049 115 Hydrogen, compressed	1066 121 Nitrogen	1079 125 Sulphur dioxide
1035 115 Ethane	1050 125 Hydrogen chloride, anhydrous	1066 121 Nitrogen, compressed	1080 126 Sulfur hexafluoride
1035 115 Ethane, compressed	1051 117 AC	1067 124 Dinitrogen tetroxide	1080 126 Sulphur hexafluoride
1036 118 Ethylamine	1051 117 Hydrocyanic acid, aqueous	1067 124 Nitrogen dioxide	1081 116P Tetrafluoroethylene, stabilized
1037 115 Ethyl chloride	solutions, with more than 20%	1069 125 Nitrosyl chloride	1082 119P Trifluorochloroethylene,
1038 115 Ethylene, refrigerated liquid	Hydrogen cyanide	1070 122 Nitrous oxide	stabilized
(cryogenic liquid)	1051 117 Hydrogen cyanide, anhydrous, stabilized	1070 122 Nitrous oxide, compressed	1083 118 Trimethylamine, anhydrous
1039 115 Ethyl methyl ether	1051 117 Hydrogen cyanide, stabilized	1071 119 Oilgas	1085 116P Vinyl bromide, stabilized
1039 115 Methyl ethyl ether	1052 125 Hydrogen fluoride, anhydrous	1071 119 Oil gas, compressed	1086 116P Vinyl chloride, stabilized
1040 119P Ethylene oxide	1053 117 Hydrogen sulfide	1072 122 Oxygen	1087 116P Vinyl methyl ether, stabilized
1040 119P Ethylene oxide with Nitroge	1053 117 Hydrogen sulphide	1072 122 Oxygen, compressed	1088 127 Acetal
1041 115 Carbon dioxide and Ethylene oxide mixture, with more than 9% but not more than 87%	1055 115 Isobulylone	1073 122 Oxygen, refrigerated liquid	1089 129 Acetaldehyde
	1056 121 Krypton	(cryogenic liquid)	1090 127 Acetone
Ethylene oxide	1056 121 Krypton, compressed	1075 115 Butane	1091 127 Acetone oils
1041 115 Carbon dioxide and Ethylen		1075 115 Butane mixture	1092 131P Acrolein, stabilized
oxide mixtures, with more than 6% Ethylene oxide	(flammable gas)	1075 115 Butylene	1093 131P Acrylonitrile, stabilized
1041 115 Ethylene oxide and Carbon	1057 115 Lighters (cigarettes)	1075 115 Isobutane	1098 131 Allyl alcohol
dioxide mixture, with mor	(flammable gas)	1075 115 Isobutane mixture	1099 131 Allyl bromide
than 9% but not more tha	1058 120 Liquefied gases, non-flammable,	1075 115 Isobutylene	1100 131 Allyl chloride
87% Ethylene oxide	charged with Nitrogen, Carbon dioxide or Air	1075 115 Liquefied petroleum gas	1104 129 Amylacetates
1041 115 Ethylene oxide and Carbon dioxide mixtures, with mo	1060 116P Methylacetylene and	1075 115 LPG	1105 129 Amyl alcohols
than 6 % Ethylene oxide	Propadiene mixture,	1075 115 Petroleum gases, liquefied	1105 129 Pentanols
1043 125 Fertilizer, ammoniating solution, with free Ammonia	on, stabilized	1075 115 Propane	1106 132 Amylamines
	1060 116P Propadiene and	1075 115 Propane mixture	1107 129 Amyl chloride
1044 126 Fire extinguishers with	Methylacetylene mixture, stabilized	1075 115 Propylene	1108 128 n-Amylene
compressed gas	1061 118 Methylamine, anhydrous	1076 125 CG	1108 128 1-Pentene
1044 126 Fire extinguishers with liquefied gas	1062 123 Methyl bromide	1076 125 Diphosgene	1109 129 Amyl formates
inquened gas 1045 124 Fluorine	1063 115 Methyl chloride	1076 125 DP	1110 127 n-Amyl methyl ketone
		1076 125 Phosgene	1110 127 Amyl methyl ketone
1045 124 Fluorine, compressed			Pag

Putting what we now know to use, utilizing the ERG

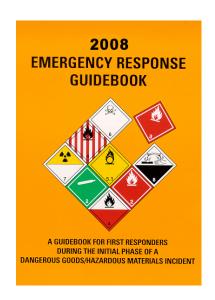
Blue-bordered pages:

List of dangerous goods in alphabetical order by the material's name.

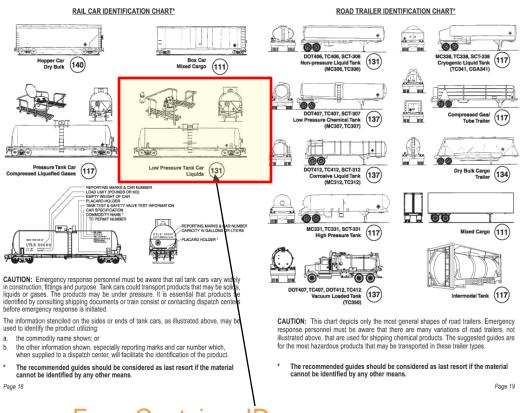

This section of the guide would be consulted by the name of the material involved. This list displays the name of the material followed by its assigned emergency response guide and 4-digit ID number.

For example:

Name of Material Guide No. ID No. Calcium 138 1401


Name of Material	Guide No.	ID No.	Name of Material	Guide No.		Name of Material	Guide No.		Name of Material	Guide No.	ID No.
Bisulfates, aqueous solution	154	2837	Boron trifluoride propionic acid	157	3420	2-Bromopentane	130	2343	Butyl ethers		1149
Bisulfites, aqueous solution,	154	2693	complex, solid			2-Bromopropane	129	2344	n-Butyl formate	129	1128
n.o.s.			Bromates, inorganic, aqueous	140	3213	Bromopropanes	129	2344	tert-Butyl hypochlorite	135	3255
Bisulfites, inorganic, aqueous	154	2693	solution, n.o.s.		4450	3-Bromopropyne	130	2345	N,n-Butylimidazole	152	2690
solution, n.o.s.	454	0007	Bromates, inorganic, n.o.s.	141	1450	Bromotrifluoroethylene	116	2419	n-Butyl isocyanate	155	2485
Bisulphates, aqueous solution	154	2837	Bromine	154	1744	Bromotrifluoromethane	126	1009	tert-Butyl isocyanate	155	2484
Bisulphites, aqueous solution, n.o.s.	154	2693	Bromine, solution	154	1744	Brown asbestos	171	2212	Butyl mercaptan	130	2347
Bisulphites, inorganic, aqueous	154	2693	Bromine, solution (Inhalation Hazard Zone A)	154	1744	Brucine	152	1570	n-Butyl methacrylate, stabilized	130P	2227
solution, n.o.s.			Bromine, solution (Inhalation	154	1744	Butadienes, stabilized	116P	1010	Butyl methyl ether	127	2350
Blasting agent, n.o.s.	112		Hazard Zone B)			Butadienes and hydrocarbon	116P	1010	Butyl nitrites	129	2351
Bleaching powder	140	2208	Bromine chloride	124	2901	mixture, stabilized		- CO	Butyl propionates	130	1914
Blue asbestos	171	2212	Bromine pentafluoride	144	1745	Butane	115	1011	Butyltoluenes	152	2667
Bombs, smoke, non-explosive,		2028	Bromine trifluoride	144	1746	Butane	115	1075	Butyltrichlorosilane	155	1747
with corrosive liquid, without initiating device			Bromoacetic acid	156	1938	Butanedione	127	2346	5-tert-Butyl-2,4,6-trinitro-	149	2956
Borate and Chlorate mixtures	140	1458	Bromoacetic acid, solid	156	3425	Butane mixture	115	1011	m-xylene		
Borneol	133	1312	Bromoacetic acid, solution	156	1938	Butane mixture	115	1075	Butyl vinyl ether, stabilized	127P	2352
Boron tribromide	157	2692	Bromoacetone	131	1569	Butanols	129	1120	1,4-Butynediol	153	2716
Boron trichloride	125	1741	Bromoacetyl bromide	156	2513	Butoxyl	127	2708	Butyraldehyde	129	1129
Boron trifluoride	125	1008	Bromobenzene	130	2514	Butyl acetates	129	1123	Butyraldoxime	129	2840
Boron trifluoride, compressed	125	1008	Bromobenzyl cyanides	159	1694	Butyl acid phosphate	153	1718	Butyric acid	153	2820
Boron trifluoride, dihydrate	157	2851	Bromobenzyl cyanides, liquid	159	1694	Butyl acrylates, stabilized	129P	2348	Butyric anhydride	156	2739
Boron trifluoride, dinydrate	157	1742	Bromobenzyl cyanides, solid	159	1694	n-Butylamine	132	1125	Butyronitrile	131	2411
complex	157	1742	Bromobenzyl cyanides, solid	159	3449	N-Butylaniline	153	2738	Butyryl chloride	132	2353
Boron trifluoride acetic acid	157	1742	1-Bromobutane	130	1126	Butylbenzenes	128	2709	Buzz	153	2810
complex, liquid			2-Bromobutane	130	2339	n-Butyl bromide	130	1126	BZ	153	2810
Boron trifluoride acetic acid	157	3419	Bromochlorodifluoromethane	126	1974	Butyl chloride	130	1127	CA	159	1694
complex, solid			Bromochloromethane	160	1887	n-Butyl chloroformate	155	2743	Cacodylic acid	151	1572
Boron trifluoride diethyl etherate		2604	1-Bromo-3-chloropropane	159	2688	sec-Butyl chloroformate	155	2742	Cadmium compound	154	2570
Boron trifluoride dimethyl etherate	139	2965	2-Bromoethyl ethyl ether	130	2340	tert-Butylcyclohexyl	156	2747	Caesium	138	1407
Boron trifluoride propionic acid complex	157	1743	Bromoform	159	2515	chloroformate	445	4040	Caesium hydroxide	157	2682
	137	1140	1-Bromo-3-methylbutane	130	2341	Butylene		1012	Caesium hydroxide, solution	154	2681
Boron trifluoride propionic acid	157	1743	Bromomethylpropanes	130	2342	Butylene		1075	Caesium nitrate	140	1451
complex, liquid			2-Bromo-2-nitropropane-1,3-d	iol 133	3241	1,2-Butylene oxide, stabilized	127P	3022	Calcium	138	1401
Page 104 Page 105											

Putting what we now know to use, utilizing the ERG

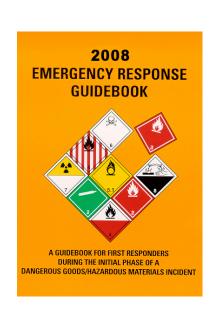


Knowing this is the container that is leaking, What guide will we be using to handle the incident?

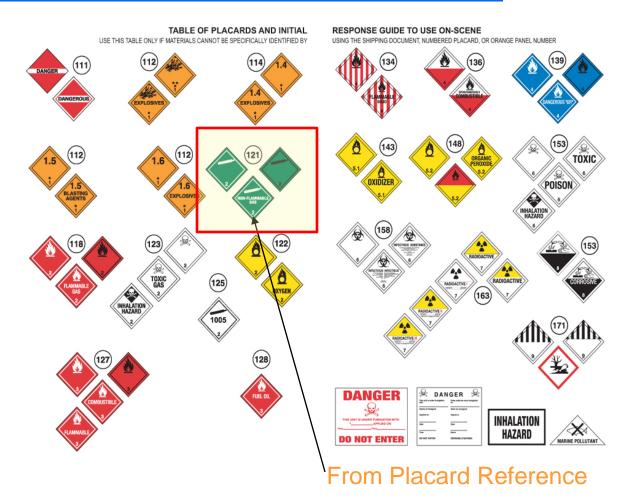
Putting what we now know to use, utilizing the ERG

Page 18 & 19

From Container ID


We'll use Reference Guide Number 131

Putting what we now know to use, utilizing the ERG



Knowing the container has this label, What guide will we be using to handle the incident?

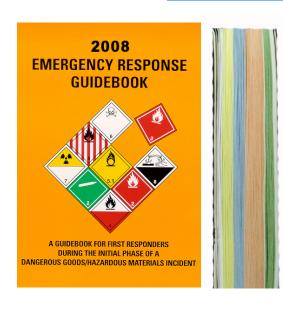
Putting what we now know to use, utilizing the ERG

Page 16 & 17

We'll use Reference Guide Number 121

Putting what we now know to use, utilizing the ERG

Our Main Objective is to get to the **Orange Sections** of the Guide.


Orange-bordered pages:

This section is the most important section of the guidebook because it is where all the <u>safety</u> <u>recommendations</u> are provided.

It comprises a total of 62 individual guides, presented in a two-page format. Each guide provides safety recommendations and emergency response information to protect yourself and the public.

The left hand page provides safety related information whereas the right hand page provides emergency response guidance and activities for fire situations, spill or leak incidents and first aid.

Putting what we now know to use, utilizing the ERG

SO:

If we have an ID number of 1203

What color in the Guide would we reference that?

Putting what we now know to use, utilizing the ERG

If we have an ID number of 1203

What color in the Guide would we reference that?

YELLOW

ID No: Guide No. 1203 **128**

Name of Material Gasoline

Putting what we now know to use, utilizing the ERG

If we had a Chemical Name: Sulfuric acid

What color in the Guide would we reference that?

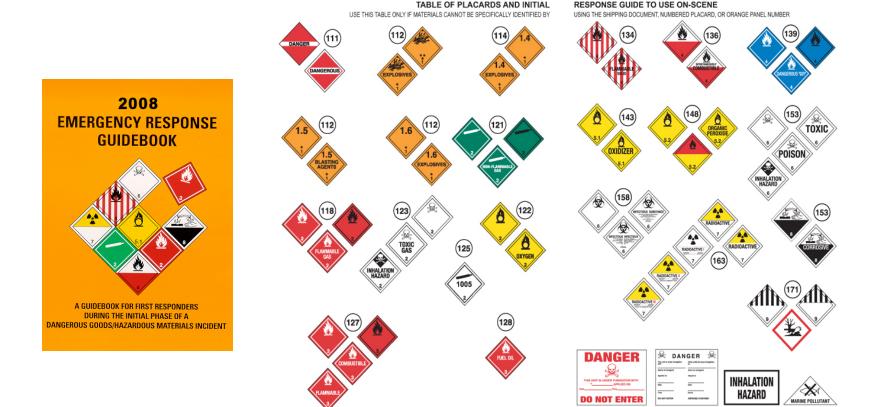
Putting what we now know to use, utilizing the ERG

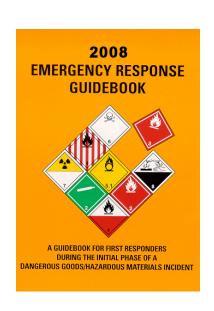
If we had a Chemical Name: Sulfuric acid

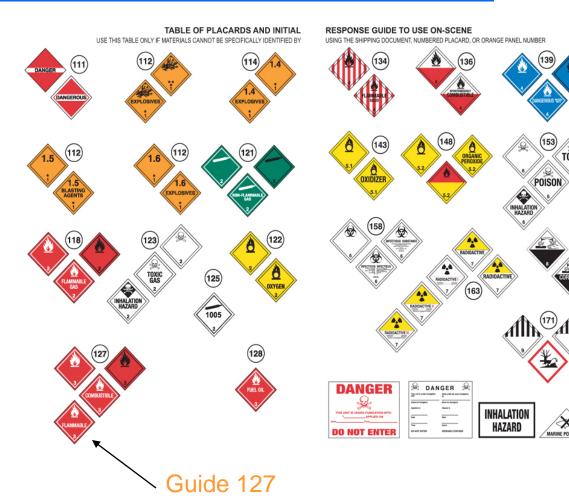
What color in the Guide would we reference that?

BLUE

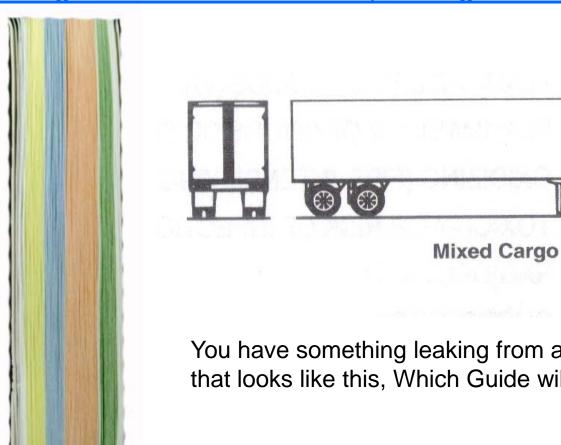
Name of Material: Guide No. ID No. Sulfuric Acid **137** 1830

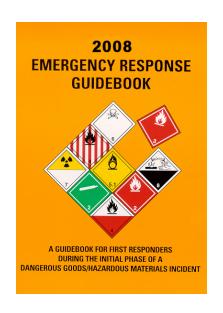

Putting what we now know to use, utilizing the ERG

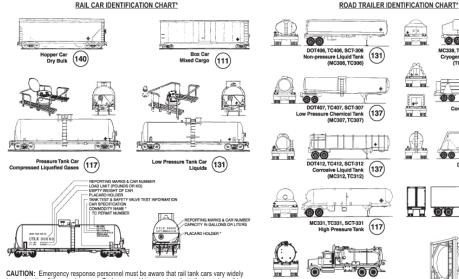

This placard is on a container that is leaking


Putting what we now know to use, utilizing the ERG

Using page 16 & 17 of the ERG (shown above) What Guide Number will we use to handle the Incident?


Putting what we now know to use, utilizing the ERG


TOXIC


Putting what we now know to use, utilizing the ERG

You have something leaking from a container that looks like this, Which Guide will we use?

Putting what we now know to use, utilizing the ERG

in construction, fittings and purpose. Tank cars could transport products that may be solids liquids or gases. The products may be under pressure. It is essential that products be identified by consulting shipping documents or train consist or contacting dispatch centers before emergency response is initiated.

The information stenciled on the sides or ends of tank cars, as illustrated above, may be used to identify the product utilizing:

- a. the commodity name shown; or
- the other information shown, especially reporting marks and car number which, when supplied to a dispatch center, will facilitate the identification of the product.
- The recommended guides should be considered as last resort if the material cannot be identified by any other means.

CAUTION: This chart depicts only the most general shapes of road trailers. Emergency response personnel must be aware that there are many variations of road trailers, not illustrated above, that are used for shipping chemical products. The suggested guides are for the most hazardous products that may be transported in these trailer types.

Vacuum Loaded Tank

The recommended guides should be considered as last resort if the material cannot be identified by any other means.

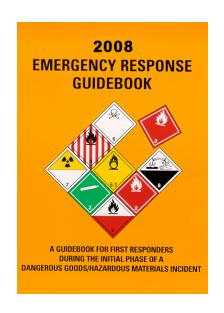
Page 19

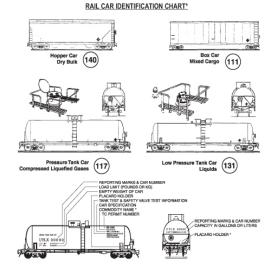
MC338, TC338, SCT-338

Cryogenic Liquid Tank (TC341, CGA341)

Compressed Gas/ (117)

Dry Bulk Cargo Trailer (134)

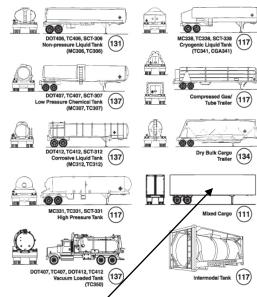

Mixed Cargo (111)


Tube Trailer

(137)

Using page 18 & 19 of the ERG (shown above) What Guide Number will we use to handle the Incident?

Putting what we now know to use, utilizing the ERG



CAUTION: Emergency response personnel must be aware that rail tank cars vary widely in construction, fittings and purpose. Tank cars could transport products that may be solids, liquids or gases. The products may be under pressure. It is essential that products be identified by consulting shipping documents or train consist or contacting dispatch centers before emergency response is initiated.

The information stenciled on the sides or ends of tank cars, as illustrated above, may be used to identify the product utilizing:

- a. the commodity name shown; or
- the other information shown, especially reporting marks and car number which, when supplied to a dispatch center, will facilitate the identification of the product.
- * The recommended guides should be considered as last resort if the material cannot be identified by any other means.

18

ROAD TRAILER IDENTIFICATION CHART*

CAUTION: This chart depicts only the most general shapes of road trailers. Emergency response personnel must, a ware that there are many variations of road trailers, not illustrated above, that are used for shipping chemical products. The suggested guides are for the most hazardous products that may be transported in these trailer types.

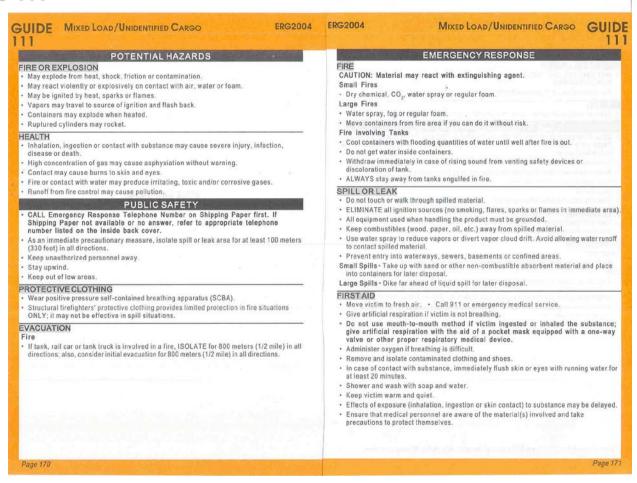
* The recommended guides should be considered as last resort if the material cannot be identified by any other means.

Page 19

Guide 111

Putting what we now know to use, utilizing the ERG

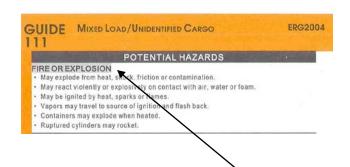
Guide 111


Guide 111 is probably the most used since it references <u>all unknowns and mixed items</u>.

This is why it's the 1st pages in the Orange Section.

Using the Guide to handle an incident

What does the Orange Pages in the Guide tell us?


Guide 111

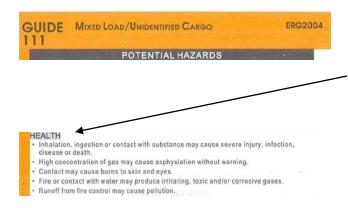
Using the Guide to handle an incident

What does the Orange Pages in the Guide tell us?

Guide 111

Our 1st Priority is to address Fire or Explosion

<u>Due to the fact</u> - the product is **unknown** or **multiple products** mixed could make an even more dangerous product.

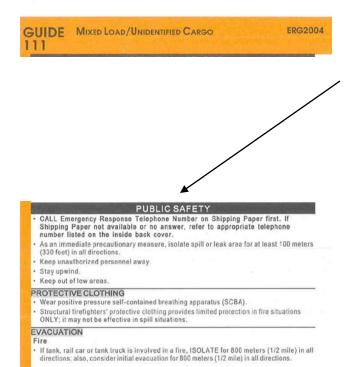

The Fire or Explosion potential needs to be dealt with first.

Once we know it's secure, then what?

Using the Guide to handle an incident

Guide 111

What does the Orange Pages in the Guide tell us?



Our 2nd Priority is to address Health Hazard

Both of these items can and should be addressed at the same time, but what is listed 1st has the most potential for danger.

Using the Guide to handle an incident

Guide 111 What does the Orange Pages in the Guide tell us?

The next section deals with addressing the problem

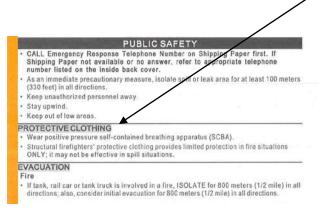
It lets you know:

Getting the shipping papers is important and to call their Emergency Response Telephone Number.

Isolate for 330' in all directions (Hot Zone) (Only use Proper PPE in Hot Zone)

Stay upwind – (Wind at your back)

Keep out of Low Area


Using the Guide to handle an incident

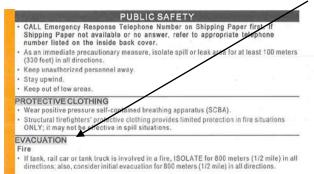
Guide 111

What does the Orange Pages in the Guide tell us?

The next section deal with addressing the problem

Protective Clothing:

Wear Positive Pressure SCBA - (not a Hepa Mask)


Structural Firefighting gear has limited protection and may not be effective in spills

Using the Guide to handle an incident

Guide 111 What does the Orange Pages in the Guide tell us?

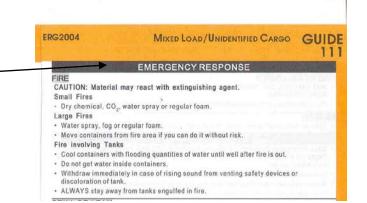
The next section deal with addressing the problem

Evacuation:

If Tank, Rail car or Tank truck on Fire – Isolate 1/2 Mile in all directions (Hot Zone) Evacuate 1/2 mile in all directions

Using the Guide to handle an incident

What does the Orange Pages in the Guide tell us?


Guide 111

Page 2 - lets you know how to meet the objective.

If you have small fire – Dry Chem., CO2, water spray or regular foam.

<u>Large Fire</u> – Water spray, fog or regular foam

<u>Fire involving Tanks</u> – Cool container – flooding quantities

Using the Guide to handle an incident

Guide 111 What does the Orange Pages in the Guide tell us?

Page 2 lets you know how to meet objective.

Spills & Leaks:

Don't Touch or Walk Through

Eliminate all Ignition sources...

Explains how to **control** spill, not Cleaning it Up!

SPILL OR LEAK

- . Do not touch or walk through spilled material.
- . ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area).
- . All equipment used when handling the product must be grounded.
- . Keep combustibles (wood, paper, oil, etc.) away from spilled material.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- Prevent entry into waterways, sewers, basements or confined areas.

Small Spills • Take up with sand or other non-combustible absorbent material and place into containers for later disposal.

Large Spills · Dike far ahead of liquid spill for later disposal.

Using the Guide to handle an incident

Guide 111

What does the Orange Pages in the Guide tell us?

Page 2 lets you know how to meet objective.

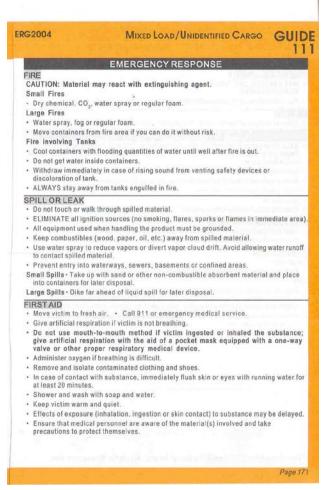
First Aid:

This section will explain what to do medically for persons that come into contact with the product.

FIRSTAID

- Move victim to fresh air.
 Call 911 or emergency medical service.
- . Give artificial respiration if victim is not breathing.
- Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device.
- · Administer oxygen if breathing is difficult
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- . Shower and wash with soap and water.
- · Keep victim warm and quiet.
- . Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.

Page 171


Using the Guide to handle an incident

Guide 111 What does the Orange Pages in the Guide tell us?

If you have the <u>MSDS Sheets</u> for the product,

<u>Use those directions</u> over this Guides, since they are more specific to the Actual Product.

This Guide is more Generic, taking in account multiple products with same reactions.

Putting what we now know to use, utilizing the ERG

This Leaves the Green Pages,

What are they used for?

Putting what we now know to use, utilizing the ERG

The Green Pages are used to identify products that are GASES.

When you look up a product by either Name or ID, You'll notice some of the products names are Highlighted in green:

If the product is <u>Highlighted Green</u>, this lets you know the <u>Product is a Gas</u> and the <u>Green Pages need to be looked at</u>.

Putting what we now know to use, utilizing the ERG

The Green Pages provide two different types of recommended <u>safe distances</u> which are:

"Initial isolation distances" - (Hot Zone)

and

"Protective action distances." – (Evacuation Area)

Putting what we now know to use, utilizing the ERG

ID				SMALL :	Il leak from		(From a large package or from many small packages)						
		First ISOLATE in all Directions		Then PROTECT persons Downwind during-				First ISOLATE in all Directions			PRO	nen TECT /nwind during-	
No.	NAME OF MATERIAL	Meters	(Feet)		DAY Kilometers (Miles)		NIGHT Kilometers (Miles)		(Feet)	DAY Kilometers (Miles)		NIGHT Kilometers (Miles)	
1005 1005 1005 1005 1005	Ammonia, anhydrous Ammonia, anhydrous, liquefied Ammonia, solution, with more than 50% Ammonia Anhydrous ammonia Anhydrous ammonia, liquefied	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	60 m	(200 ft)	0.6 km	(0.4 mi)	2.2 km	(1.4 ml)
1008 1008	Boron trifluoride Boron trifluoride, compressed	30 m	(100 ft)	0.1 km	(0.1 mi)	0.6 km	(0.4 mi)	180 m	(600 ft)	1.8 km	(1.1 mi)	4.8 km	(3.0 mi)
1016 1016	Carbon monoxide	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	90 m	(300 ft)	0.7 km	(0.4 mi)	2.4 km	(1,5 mi)
1017	Chlorine	30 m	(100 ft)	0.2 km	(0.2 mi)	1.2 km	(im 8.0)	240 m	(800 ft)	2.4 km	(1.5 mi)	7.4 km	(4.6 mi)
1023 1023	Coal gas Coal gas, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.2 km	(0.1 mi)	60 m	(200 ft)	0.4 km	(0.2 mi)	0.5 km	(0.3 mi)
1026 1026 1026	Cyanogen Cyanogen, liquefied Cyanogen gas	30 m	(100 ft)	0.2 km	(0.2 mi)	1.2 km	(im 8.0)	120 m	(400 ft)	1.1 km	(0.7 mi)	4.3 km	(2.7 mi)
1040 1040	Ethylene oxide Ethylene oxide with Nitrogen	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0,1 mi)	90 m	(300 ft)	0.8 km	(0.5 mi)	2.4 km	(1,5 mi)
1045 1045	Fluorine Fluorine, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.5 km	(0.3 mi)	90 m	(300 ft)	0.8 km	(0.5 ml)	3.5 km	(2.2 mi)
1048	Hydrogen bromide, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.5 km	(0.3 mi)	180 m	(600 ft)	1.8 km	(1.1 mi)	5.7 km	(3.6 mi)
1050	Hydrogen chloride, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.4 km	(0.3 mi)	360 m	(1200 ft)	3.6 km	(2.2 mi)	10.4 km	(6.5 mi)
1051	AC (when used as a weapon)	60 m	(200 ft)	0.2 km	(0.1 mi)	0.5 km	(0.3 mi)	500 m	(1500 ft)	1.7 km	(1.0 mi)	3.9 km	(2.4 mi)

NOTE The TOP:

It's Broken into: Small & Large Spills

Small = usable amounts

Large = Multiple amounts, as a case or tanker.

Use better judgment, *not* written in stone, always better to be safe, leaning to large, then sorry.

Putting what we now know to use, utilizing the ERG

		(From	a small pad	SMALL :		a large pack	ACTION DISTANCES LARGE SPILLS (From a large package or from many small packages)						
ID		Fi ISOL in all Di	ATE		PRO sons Dow	ren TECT nwind duri		ISOL in all Di	ATE		PRO ersons Dov	hen OTECT vnwind during- NIGHT	
No.	NAME OF MATERIAL	Meters	(Feet)	DAY Kilometers (Miles)		NIGHT Kilometers (Miles)		Meters	(Feet)	DAY Kilometers (Miles)			
1005 1005 1005 1005 1005	Ammonia, anhydrous Ammonia, anhydrous, liquefied Ammonia, solution, with more than 50% Ammonia Anhydrous ammonia Anhydrous ammonia, liquefied	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	60 m	(200 ft)	0.6 km	(0.4 mi)	2.2 km	(1.4 mi)
1008	Boron trifluoride Boron trifluoride, compressed	30 m	(100 ft)	0.1 km	(0.1 mi)	0.6 km	(0.4 mi)	180 m	(600 ft)	1.8 km	(1.1 mi)	4.8 km	(3.0 mi
1016 1016	Carbon monoxide	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	90 m	(300 ft)	0.7 km	(0.4 mi)	2.4 km	(1,5 mi
1017	Chlorine	30 m	(100 ft)	0.2 km	(0.2 mi)	1.2 km	(im 8.0)	240 m	(800 ft)	2.4 km	(1.5 mi)	7.4 km	(4.6 mi
1023 1023	Coal gas Coal gas, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.2 km	(0.1 mi)	60 m	(200 ft)	0.4 km	(0.2 mi)	0.5 km	(0.3 mi
1026 1026 1026	Cyanogen Cyanogen, liquefied Cyanogen gas	30 m	(100 ft)	0.2 km	(0.2 mi)	1.2 km	(im 8.0)	120 m	(400 ft)	1.1 km	(0.7 mi)	4.3 km	(2.7 mi
1040 1040	Ethylene oxide Ethylene oxide with Nitrogen	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	90 m	(300 ft)	0.8 km	(0.5 mi)	2.4 km	(1,5 mi
1045 1045	Fluorine Fluorine, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.5 km	(0.3 mi)	90 m	(300 ft)	0.8 km	(0.5 mi)	3.5 km	(2.2 mi
1048	Hydrogen bromide, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.5 km	(0.3 mi)	180 m	(600 ft)	1.8 km	(1.1 mi)	5.7 km	(3.6 mi
1050	Hydrogen chloride, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.4 km	(0.3 mi)	360 m	(1200 ft)	3.6 km	(2.2 mi)	10.4 km	(6.5 mi
1051	AC (when used as a weapon)	60 m	(200 ft)	0.2 km	(0.1 mi)	0.5 km	(0.3 mi)	500 m	(1500 ft)	1.7 km	(1.0 mi)	3.9 km	(2.4 mi

Isolation:

This is around the entire spill. (center outwards)

This will be the "Hot zone"

No personnel shall enter without **proper PPE**.

Putting what we now know to use, utilizing the ERG

		(From		SMALL Skage or sma		a large pack	LARGE SPILLS (From a large package or from many small packages)						
ID		First ISOLATE in all Directions		per DA	Th PROT Sons Dow	ECT wind duni	n		ATE rections	persons DAY		Then ROTECT W WING during- NIGHT	
No.	NAME OF MATERIAL	Meters	(Feet)	Kilomoto	o (Miles)	Klemete	o (Miles)	Meters	(Feet)	Clomotor	e (Miles)	Kilomoto	es (Miles)
1005 1005 1005 1005 1005	Ammonia, anhydrous Ammonia, anhydrous, liquefied Ammonia, solution, with more than 50% Ammonia Anhydrous ammonia Anhydrous ammonia, liquefied	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	60 m	(200 ft)	0.6 km	(0.4 mi)	2.2 km	(1.4 mi)
1008 1008	Boron trifluoride Boron trifluoride, compressed	30 m	(100 ft)	0.1 km	(0.1 mi)	0.6 km	(0.4 mi)	180 m	(600 ft)	1.8 km	(1.1 mi)	4.8 km	(3.0 ml)
1016 1016	Carbon monoxide Carbon monoxide, compressed	30 m	(100 ft)	0.1 km	(0.1 ml)	0.1 km	(0.1 mi)	90 m	(300 ft)	0.7 km	(0.4 mi)	2.4 km	(1.5 mi)
1017	Chlorine	30 m	(100 ft)	0.2 km	(0.2 mi)	1.2 km	(im 8.0)	240 m	(800 ft)	2.4 km	(1.5 mi)	7.4 km	(4.6 mi)
1023 1023	Coal gas Coal gas, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.2 km	(0.1 mi)	60 m	(200 ft)	0,4 km	(0.2 mi)	0.5 km	(0.3 mi)
1026 1026 1026	Cyanogen Cyanogen, liquefied Cyanogen gas	30 m	(100 ft)	0.2 km	(0.2 mi)	1.2 km	(0.8 mi)	120 m	(400 ft)	1.1 km	(0.7 mi)	4.3 km	(2.7 mi)
1040 1040	Ethylene oxide Ethylene oxide with Nitrogen	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0,1 mi)	90 m	(300 ft)	0.8 km	(0.5 mi)	2.4 km	(1.5 mi)
1045 1045	Fluorine Fluorine, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.5 km	(0.3 mi)	90 m	(300 ft)	0.8 km	(0.5 mi)	3.5 km	(2.2 mi)
1048	Hydrogen bromide, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.5 km	(0.3 mi)	180 m	(600 ft)	1.8 km	(1.1 mi)	5.7 km	(3.6 mi)
1050	Hydrogen chloride, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.4 km	(0.3 mi)	360 m	(1200 ft)	3,6 km	(2.2 mi)	10.4 km	(6.5 mi)
1051	AC (when used as a weapon)	60 m	(200 ft)	0.2 km	(0.1 mi)	0.5 km	(0.3 mi)	500 m	(1500 ft)	1.7 km	(1.0 mi)	3.9 km	(2.4 mi)

Protect:

This is the evacuation area.

This defines who could be effected by the product within 30 minutes of the spill.

Since day time air is lighter then the nights air - (once Sun sets), you can see there are 2 different distances.

Putting what we now know to use, utilizing the ERG

		(From	a small pac	SMALL :		a large pack	LARGE SPILLS (From a large package or from many small packages)						
ID		First ISOLATE in all Directions		Then PROTECT persons Downwind during-				First ISOLATE in all Directions		Then PROTECT persons Downwind during- DAY NIGHT			
No.	NAME OF MATERIAL	Meters	(Feet)			NIGHT Kilometers (Miles)		Meters	(Feet)	Kilometers (Miles)			
1005 1005 1005 1005 1005	Ammonia, anhydrous Ammonia, anhydrous, liquefied Ammonia, solution, with more than 50% Ammonia Anhydrous ammonia Anhydrous ammonia, liquefied	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	60 m	(200 ft)	0.6 km	(0.4 mi)	2.2 km	(1.4 ml)
1008	Boron trifluoride Boron trifluoride, compressed	30 m	(100 ft)	0.1 km	(0.1 mi)	0.6 km	(0.4 mi)	180 m	(600 ft)	1.8 km	(1.1 mi)	4.8 km	(3.0 mi)
1016 1016	Carbon monoxide	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	90 m	(300 ft)	0.7 km	(0.4 mi)	2.4 km	(1.5 mi)
1017	Chlorine	30 m	(100 ft)	0.2 km	(0.2 mi)	1.2 km	(im 8.0)	240 m	(800 ft)	2.4 km	(1.5 mi)	7.4 km	(4.6 mi)
1023 1023	Coal gas Coal gas, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.2 km	(0.1 mi)	60 m	(200 ft)	0.4 km	(0.2 mi)	0.5 km	(0.3 mi)
1026 1026 1026	Cyanogen Cyanogen, liquefied Cyanogen gas	30 m	(100 ft)	0.2 km	(0.2 mi)	1.2 km	(im 8.0)	120 m	(400 ft)	1.1 km	(0.7 mi)	4.3 km	(2.7 mi)
1040 1040	Ethylene oxide Ethylene oxide with Nitrogen	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0,1 mi)	90 m	(300 ft)	0.8 km	(0.5 mi)	2.4 km	(1.5 mi)
1045 1045	Fluorine Fluorine, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.5 km	(0.3 mi)	90 m	(300 ft)	0.8 km	(0.5 mi)	3.5 km	(2.2 mi)
1048	Hydrogen bromide, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.5 km	(0.3 mi)	180 m	(600 ft)	1.8 km	(1.1 mi)	5.7 km	(3.6 mi)
1050	Hydrogen chloride, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.4 km	(0.3 mi)	360 m	(1200 ft)	3.6 km	(2.2 mi)	10.4 km	(6.5 mi)
1051	AC (when used as a weapon)	60 m	(200 ft)	0.2 km	(0.1 mi)	0.5 km	(0.3 mi)	500 m	(1500 ft)	1.7 km	(1.0 mi)	3.9 km	(2.4 mi)

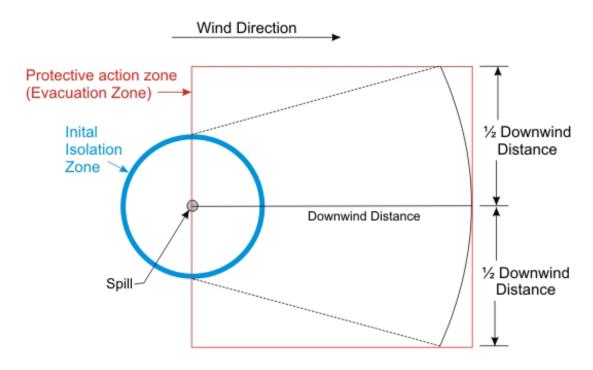
Protect:

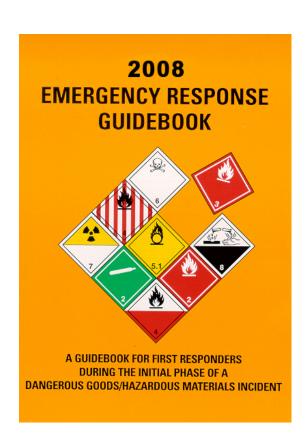
Evacuation is only done to the **Downwind** direction, from the spill.

Note – Wind directions can change during the event, so will the protected area, wind needs to be monitored.

Putting what we now know to use, utilizing the ERG

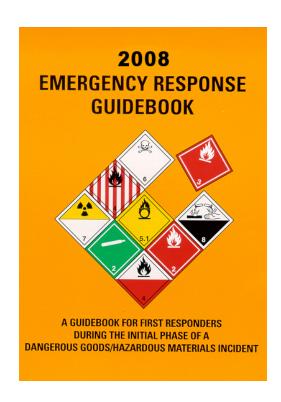
ID No. 1005 1005 1005 1005		(From	a small pac	SMALL : kage or sma	Il leak from		LARGE SPILLS (From a large package or from many small packages)						
		First ISOLATE in all Directions		Then PROTECT persons Downwind during-				First ISOLATE in all Directions		Then PROTECT persons Downwind during-			
	NAME OF MATERIAL	Meters	(Feet)	DAY Kilometers (Miles)		NIGHT Kilometers (Miles)		Meters	(Feet)	DAY Kilometers (Miles)		NIGHT Kilometers (Miles	
	Ammonia, anhydrous, liquefied Ammonia, solution, with more than 50% Ammonia Anhydrous ammonia Anhydrous ammonia, liquefied	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	60 m	(200 ft)	0.6 km	(0.4 mi)	2.2 km	(1.4 ml)
1008 1008	Boron trifluoride Boron trifluoride, compressed	30 m	(100 ft)	0.1 km	(0.1 mi)	0.6 km	(0.4 mi)	180 m	(600 ft)	1.8 km	(1.1 mi)	4.8 km	(3.0 mi)
1016 1016	Carbon monoxide	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	90 m	(300 ft)	0.7 km	(0.4 mi)	2.4 km	(1.5 mi)
1017	Chlorine	30 m	(100 ft)	0.2 km	(0.2 mi)	1.2 km	(im 8.0)	240 m	(800 ft)	2.4 km	(1.5 mi)	7.4 km	(4.6 mi)
1023 1023	Coal gas Coal gas, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.2 km	(0.1 mi)	60 m	(200 ft)	0.4 km	(0.2 mi)	0.5 km	(0.3 mi)
1026 1026 1026	Cyanogen Cyanogen, liquefied Cyanogen gas	30 m	(100 ft)	0.2 km	(0.2 mi)	1.2 km	(im 8.0)	120 m	(400 ft)	1.1 km	(0.7 mi)	4.3 km	(2.7 mi)
1040 1040	Ethylene oxide Ethylene oxide with Nitrogen	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0,1 mi)	90 m	(300 ft)	0.8 km	(0.5 mi)	2.4 km	(1.5 mi)
1045 1045	Fluorine Fluorine, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.5 km	(0.3 mi)	90 m	(300 ft)	0.8 km	(0.5 ml)	3.5 km	(2.2 mi)
1048	Hydrogen bromide, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.5 km	(0.3 mi)	180 m	(600 ft)	1.8 km	(1.1 mi)	5.7 km	(3.6 mi)
1050	Hydrogen chloride, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.4 km	(0.3 mi)	360 m	(1200 ft)	3.6 km	(2.2 mi)	10.4 km	(6.5 mi)
1051	AC (when used as a weapon)	60 m	(200 ft)	0.2 km	(0.1 mi)	0.5 km	(0.3 mi)	500 m	(1500 ft)	1.7 km	(1.0 mi)	3.9 km	(2.4 mi)


Protect:


Evacuation can be removing people from the area, but if this will create a larger hazard for the people being evacuated, then it will mean, sheltering in place:

Closing windows, turning off burners, air conditioners.... and leaving them where they are at, as long as they are inside a form of shelter.

Putting what we now know to use, utilizing the ERG


Isolation & Protection Zones

What if the Guide doesn't have the Information you need?

Go to the last page of the Guide (inside back cover):

UNITED STATES

1. CHEMTREC®

1-800-424-9300

(Toll-free in the U.S., Canada, and the U.S. Virgin Islands) **703-527-3887** For calls originating elsewhere (Collect calls are accepted)

2. CHEM-TEL, INC.

1-800-255-3924

(Toll-free in the U.S., Canada, and the U.S. Virgin Islands) 813-248-0585 For calls originating elsewhere (Collect calls are accepted)

3. INFOTRAC

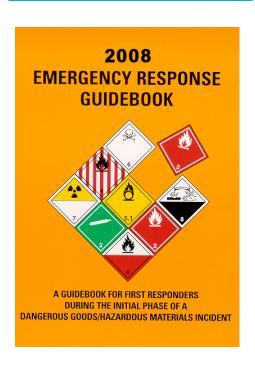
1-800-535-5053

(Toll-free in the U.S., Canada, and the U.S. Virgin Islands) 352-323-3500 For calls originating elsewhere (Collect calls are accepted)

4. 3E COMPANY

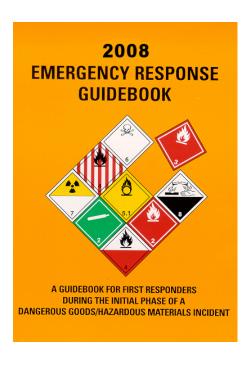
1-800-451-8346

(Toll-free in the U.S., Canada, and the U.S. Virgin Islands) **760-602-8703** For calls originating elsewhere (Collect calls are accepted)


5. MILITARY SHIPMENTS

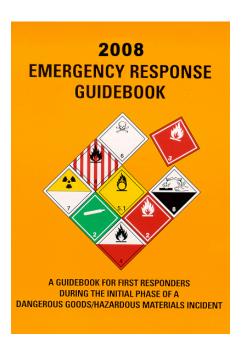
703-697-0218 - Explosives/ammunition incidents (Collect calls are accepted)

1-800-851-8061 - All other dangerous goods incidents


These are additional numbers to call, with 24 hours support, they can help you further.

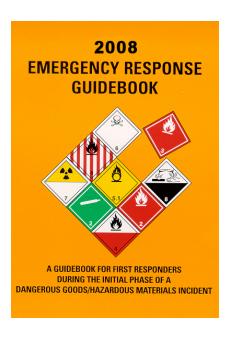
Lets Review:

If we know the products Name, where in the guide will we look?


Lets Review:

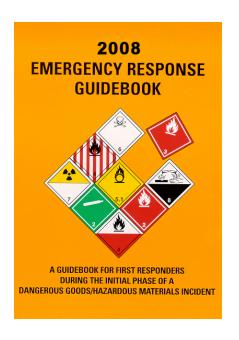
If we know the products Name, where in the guide will we look?

Blue pages for Guide Number then using the guide # in the Orange pages for Guidance on handling the Incident

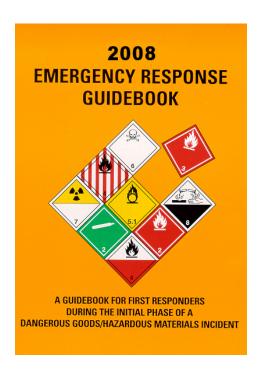

Lets Review:

When we see a chemical name highlighted in Green,

What does it mean, and what extra things do we need to do?


Lets Review:

When we see a chemical name highlighted, What does it mean, and what extra thing do we need to do?


This means we are dealing with a gas besides using the Orange pages for guidance we'll need to go to the Green pages for Isolation and Evacuation distances.

Lets Review:

Is the Emergency Response Guidebook an **Offensive** or **Defensive** tool and what tool is better used to handle an incident?

Lets Review:

Is the Emergency Response Guidebook an Offensive or Defensive tool and what tool is better used to handle an incident?

The ERG is a **Defensive tool**, used to meet incident priorities: Recognition, Isolation, Protection, Notification

The **MSDS** (buildings), <u>Bill of lading</u> (roadway), <u>Consist</u> (train), <u>Dangerous Cargo Manifest</u> (boat), or <u>Air Bill</u> (plane), are usually more specific then the ERG, and should provide the same information and then some...

Lets Review:

A tanker truck carrying the following product rolled over and is leaking from the top hatch.

NOW WHAT?

Lets Review:

The ID No. is 1202 and it is a <u>flammable liquid</u> (Class 3, red placard);

The YELLOW-bordered pages indicate that the substance is Diesel fuel or Fuel oil, and refers to Guide 128;

The substance is not highlighted; there is no need to use the **GREEN** Section;

The Guide 128 corresponds to

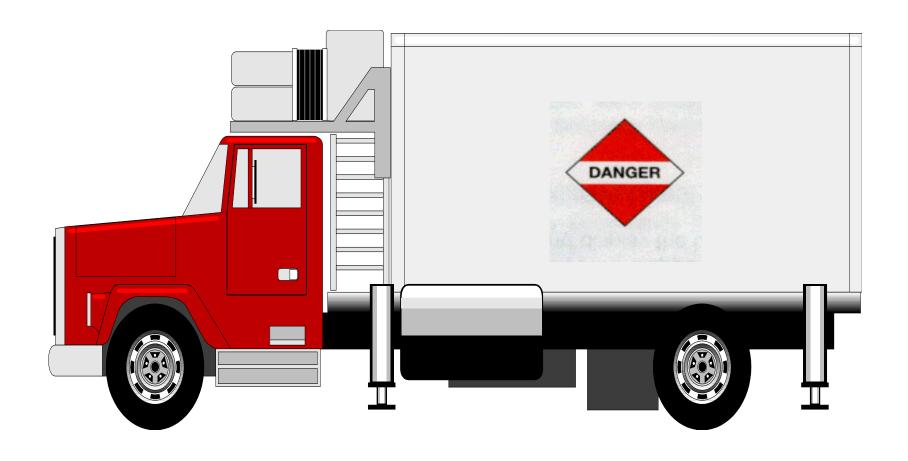
Flammable Liquids (Non-Polar / Water-Immiscible);

As an <u>immediate</u> precautionary measure, the Guide suggests to isolate spill or leak area for at least 150 feet in all directions.

Lets Review:

At **Guide 128**, under the **Potential Hazards** Section, the **Fire or Explosion** hazards precede the **Health** hazards;

This type of substance is flammable and vapors may form explosive mixture with air;


Most vapors are heavier than air, they will spread along the ground and collect in low or confined areas;

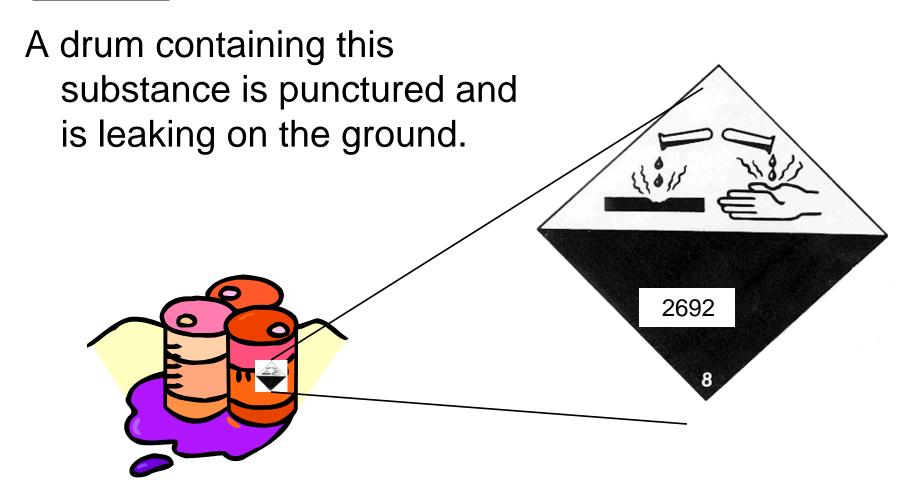
Containers may explode when heated;

Inhalation or contact with material may irritate or burn skin and eyes.

Lets Review:

This is your Hazard Call – Now what?

Lets Review:


There is <u>no ID No</u>. and the DANGER placard indicates a mixed load of dangerous goods;

In this case, refer to **Guide 111**, **Mixed Load / Unidentified Cargo**;

As an immediate precautionary measure, the Guide suggests to isolate the area for at least 330 feet in all directions, until the contents of the vehicle is known;

In case of fire, the Guide suggests to isolate for 1 mile in all directions and to consider an initial evacuation of ½ mile in all directions;

Lets Review:

Lets Review:

The ID No. is 2692;

The YELLOW-bordered pages indicate that this substance is called *Boron tribromide*;

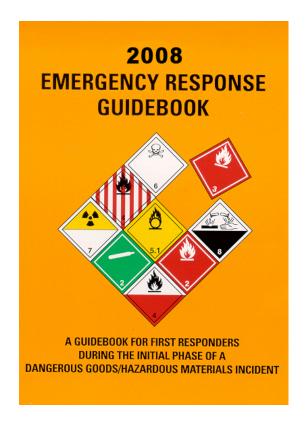
It refers to **Guide 157** and is highlighted;

The Guide 157 correspond to Substances – Toxic and/or Corrosive (Non-Combustible / Water-Sensitive);

Since the substance is highlighted and there is a spill situation, the **GREEN** Section must be used to determine the Initial Isolation and Protective Action Distances;

For this product, the **GREEN** Section presents 2 separate entries for ID No. 2692: the 1st one applies when the product is spilled on the ground and the 2nd one, when it is spilled in water;

Lets Review:



In this case, the product is spilled on the ground and the Initial Isolation Distance suggested in the **GREEN** Section is 90 feet in all directions for a small spill and 180 feet in all directions for a large spill;

Additionally, the Protective Action Distances for day and night will have to be taken from the **GREEN** Section;

The **Guide 157** indicates that this type of substance is toxic and non-combustible, but a fire will produce irritating, corrosive and/or toxic gases.

Final Words:

Remember our safety is ALWAYS the first concern and the top priority.

Don't become part of the event by making yourself a victim!

THE END